Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guidongnin A, a natural diterpenoid

Hao Shi

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: shihao@126.com

Received 12 November 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.011 Å; R factor = 0.078; wR factor = 0.237; data-to-parameter ratio = 7.5.

The title compound, $C_{20}H_{26}O_6$, isolated from *Rabdosia var* lophanthoides Hara, is built up from five fused rings. The cyclohexane ring A adopts a chair conformation, ring B exists in a screw-boat conformation and ring C adopts a boat conformation; the two five-membered rings D and E adopt envelope conformations. The isobenzofuran ring system couples orthogonally to the methanocyclohepta[c]pyran unit through a spiro C atom. The asymmetric unit consists of two unique molecules linked by hydrogen bonds to form a dimer. The dimers are further interconnected through $O-H\cdots O$ hydrogen bonds.

Related literature

For information on ring puckering analysis, see: Cremer & Pople (1975). For previous isolation of the title compound, see: Sun *et al.* (1988).

Experimental

Crystal data $C_{20}H_{26}O_6$ $M_r = 362.41$

Orthorhombic, $P2_12_12_1$ *a* = 12.2614 (15) Å

b = 15.6668 (18) Å
c = 18.697 (2) Å
V = 3591.7 (8) Å ³
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{\rm min} = 0.961, T_{\rm max} = 0.973$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.078$ 1896 restraints

 $wR(F^2) = 0.237$ H-atom parameters constrained

 S = 1.10 $\Delta \rho_{max} = 0.54 \text{ e } \text{ Å}^{-3}$

 3556 reflections
 $\Delta \rho_{min} = -0.56 \text{ e } \text{ Å}^{-3}$

 472 parameters
 $\Delta \rho_{min} = -0.56 \text{ e } \text{ Å}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.41 \times 0.30 \times 0.28$ mm

17440 measured reflections

3556 independent reflections

1970 reflections with $I > 2\sigma(I)$

T = 298 (2) K

 $R_{\rm int} = 0.084$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4\cdots O3A$	0.82	2.46	3.159 (8)	144
$O4A - H4A \cdots O3$	0.82	1.94	2.750 (8)	168
$O5-H5\cdots O3A^{i}$	0.82	1.97	2.787 (8)	175
$O5A - H5B \cdots O6A^{ii}$	0.82	2.11	2.903 (9)	164

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, -z.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

This project was supported by the Natural Science Foundation of Zhejiang Province, People's Republic of China (grant No. Y205318).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2433).

References

- Bruker (1999). SMART (Version 5.611), SAINT (Version 6.02a) and SADABS (Version 2.08). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sun, H. D., Pan, L. T., Lin, Z. W. & Niu, F. D. (1988). Yunnan Zhiwu Yanjiou, 10, 325–330.

Acta Cryst. (2007). E63, o4890 [doi:10.1107/S1600536807060965]

Guidongnin A, a natural diterpenoid

H. Shi

Comment

The diterpenoid Guidongnin A, $C_{20}H_{26}O_6$, has been previously isolated from Rabdosia rubescens Hara (Sun *et al.*, 1988), its structure was established from the spectral and chemical evidence. Recently we isolated the compound from Rabdosia var lophanthoides Hara for the first time, and its structure is confirmed by an X-ray diffraction study.

Two unique molecules are present in the asymmetric unit, both molecule 1 (Fig.1) and molecule 2 (Fig.2) are built up from five fused rings, three six membered (A,B,C,A',B'and C') and two five membered rings (D,E,D' and E'). The conformations of the different rings extracted from the puckering parameters (Cremer & Pople, 1975) are given in Table 2. Ring A and A' adopt a chair conformation, ring B and B' exist in a screw-boat conformation and rings C and C' adopt a boat conformation. Rings D, D', E and E' adopt an envelope conformation. The isobenzofuran ring system couples orthogonally to the methanocyclohepta[c] pyran moiety through a spiro C atom.

This two molecules are linked by O4—H4…O3A and O4A—H4A…O3 hydrogen bonds to form a dimer. The dimers are further interconnected through O—H…O hydrogen bonds (Fig.3).

Experimental

2 kg of dried powder from the whole plant, Rabdosia var lophanthoides Hara, was soaked three times with 95% EtOH at room temperature. The ethanolic extracts were evaporated under reduced pressure and the residue was successively fractionated with petroleum ether, EtOAc and n-BuOH. The residue of the petroleum ether fraction was subjected to column chromatography over silica gel. The column was eluted with a petroleum ether-EtOAc mixture and the title compound isolated. Crystals suitable for X-ray structure analysis were obtained by slow evaporation from a solution of methanol at room temperature.

Refinement

H atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.96 Å (CH₃), 0.97 Å (CH₂) and 0.98(CH) and with the temperature factors U_{iso} = 1.5 U_{eq} (CH₃) and 1.2 U_{eq} (CH₂, CH).

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined from the X-ray analyses and the Friedel pairs were merged; stereochemistry was assigned following the work of Sun *et al.* (1988).

Figures

Fig. 1. Molecular view of molecule 1 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres with arbitrary radii.

Fig. 2. Molecular view of molecule 2 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres with arbitrary radii.

Fig. 3. Partial packing view of the title compound showing O—H···O hydrogen bonding interactions. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry operations are assigned as follows: for atoms labelled with primes ('), (-1/2 + x, 3/2 - y, -z), asterisks (*) (1 - x, -1/2 + y, 1/2 - z), hashes (#) (-x + 1, 1/2 + y, 1/2 - z) and dollar signs (\$) (1/2 + x, 3/2 - y, -z), respectively.].

(3aR,4R,4'aS,5'R,7'S,7aR,9'R,9'aS)-5',9'-dihydroxy-7a-methyl-8'- methyleneperhydrospiro[isobenzofuran-4(1H),4'(3'H)- [1H-7,9a]methanocyclohepta[c]pyran]-1',3(3aH)-dione

Crystal data

C20H26O6

$M_r = 362.41$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
<i>a</i> = 12.2614 (15) Å
<i>b</i> = 15.6668 (18) Å
c = 18.697 (2) Å
$V = 3591.7 (8) \text{ Å}^3$
Z = 8

 $F_{000} = 1552$ $D_{\rm x} = 1.340 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2028 reflections $\theta = 2.2 - 18.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 298 (2) KPrismatic, colorless $0.41 \times 0.30 \times 0.28 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3556 independent reflections
Radiation source: fine-focus sealed tube	1970 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.084$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$

φ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$h = -13 \rightarrow 14$
$T_{\min} = 0.961, \ T_{\max} = 0.973$	$k = -16 \rightarrow 18$
17440 measured reflections	$l = -22 \rightarrow 18$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.078$	$w = 1/[\sigma^2(F_o^2) + (0.1062P)^2 + 2.5318P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.237$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.10	$\Delta \rho_{max} = 0.54 \text{ e} \text{ Å}^{-3}$
3556 reflections	$\Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$
472 parameters	Extinction correction: none
1896 restraints	
Primary atom site location: structure-invariant direct methods	
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Tractional atomic coordinates and isotropic of equivalent isotropic displacement parameters (A)	Fractional d	atomic	coordinates	and	isotropic or	equivalent	isotropic	displacement	parameters	$(Å^2)$)
---	--------------	--------	-------------	-----	--------------	------------	-----------	--------------	------------	---------	---

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.3555 (6)	0.3465 (4)	-0.0342 (3)	0.0854 (18)
01A	0.1460 (6)	0.4505 (4)	0.0174 (3)	0.0770 (16)
O2	0.2908 (4)	0.4019 (4)	0.1997 (3)	0.0642 (14)
O2A	0.2089 (4)	0.7286 (3)	0.0555 (3)	0.0599 (13)
O3	0.2473 (5)	0.5342 (4)	0.2199 (4)	0.089 (2)
O3A	0.2729 (4)	0.7432 (4)	0.1633 (3)	0.0644 (15)
O4	0.4497 (6)	0.6058 (3)	0.1203 (3)	0.0697 (16)
H4	0.4029	0.6414	0.1108	0.105*
O4A	0.0623 (5)	0.6303 (4)	0.2404 (3)	0.0615 (15)
H4A	0.1224	0.6081	0.2357	0.092*
O5	0.5642 (5)	0.3563 (4)	0.2942 (3)	0.0704 (16)

H5	0.6109	0 3235	0 3092	0.106*
05A	-0.0730(4)	0.8390 (3)	0.0395 (3)	0.0554 (14)
H5B	-0.1236	0.8706	0.0284	0.083*
06	0.2848 (6)	0.2872 (5)	0.0616 (4)	0.105 (2)
O6A	0.2237 (5)	0.5683 (4)	-0.0221(4)	0.0778 (18)
C1	0.3744 (7)	0.3381 (5)	0.1955 (5)	0.0627 (19)
H1A	0.3433	0.2858	0.1767	0.075*
H1B	0.4017	0.3263	0.2432	0.075*
C1A	0.1156 (6)	0.7223 (5)	0.0093 (4)	0.0555 (18)
H1C	0.1384	0.6989	-0.0364	0.067*
H1D	0.0868	0.7791	0.0007	0.067*
C3	0.3182 (7)	0.4818 (6)	0.2136 (4)	0.0581 (19)
C3A	0.1937 (7)	0.7400 (5)	0.1253 (5)	0.0496 (17)
C4	0.4375 (6)	0.5041 (5)	0.2221 (4)	0.0453 (16)
C4A	0.0797 (6)	0.7523 (5)	0.1533 (4)	0.0445 (15)
C5	0.4566 (7)	0.5961 (5)	0.1943 (4)	0.0566 (18)
H5A	0.4037	0.6343	0.2170	0.068*
C5A	0.0716 (7)	0.7189 (5)	0.2313 (4)	0.0545 (17)
H5C	0.1354	0.7390	0.2581	0.065*
C6	0.5690 (7)	0.6152 (5)	0.2241 (4)	0.0558 (18)
C6A	-0.0275 (7)	0.7649 (5)	0.2585 (4)	0.0578 (19)
C7	0.5801 (8)	0.5631 (5)	0.2931 (4)	0.0617 (19)
H7	0.5992	0.5991	0.3341	0.074*
C7A	-0.0466 (7)	0.8426 (5)	0.2124 (4)	0.0601 (19)
H7A	-0.0576	0.8938	0.2416	0.072*
C8	0.6638 (7)	0.4907 (5)	0.2817 (4)	0.0592 (19)
H8A	0.7243	0.5119	0.2534	0.071*
H8B	0.6923	0.4726	0.3277	0.071*
C8A	-0.1419 (6)	0.8280 (5)	0.1616 (4)	0.0501 (17)
H8C	-0.1726	0.8828	0.1482	0.060*
H8D	-0.1981	0.7959	0.1862	0.060*
C9	0.6122 (6)	0.4138 (5)	0.2436 (4)	0.0544 (18)
Н9	0.6700	0.3832	0.2180	0.065*
C9A	-0.1089 (6)	0.7800 (5)	0.0939 (4)	0.0451 (16)
H9A	-0.1730	0.7494	0.0758	0.054*
C10	0.5252 (6)	0.4415 (4)	0.1887 (4)	0.0416 (15)
H10	0.5641	0.4747	0.1523	0.050*
C10A	-0.0175 (5)	0.7145 (4)	0.1078 (3)	0.0364 (14)
H10A	-0.0504	0.6702	0.1380	0.044*
C11	0.4689 (6)	0.3660 (5)	0.1479 (4)	0.0481 (16)
C11A	0.0259 (6)	0.6667 (4)	0.0400 (4)	0.0415 (14)
C12	0.5449 (7)	0.2881 (5)	0.1368 (5)	0.0625 (19)
H12A	0.5762	0.2723	0.1826	0.075*
H12B	0.5016	0.2403	0.1202	0.075*
C12A	-0.0584 (6)	0.6565 (5)	-0.0210 (4)	0.0505 (17)
H12C	-0.0933	0.7112	-0.0293	0.061*
H12D	-0.0203	0.6407	-0.0645	0.061*
C13	0.6370 (7)	0.3038 (6)	0.0839 (5)	0.068 (2)
H13A	0.6829	0.3500	0.1007	0.082*

H13B	0.6816	0.2529	0.0797	0.082*
C13A	-0.1465 (7)	0.5897 (5)	-0.0059 (4)	0.0597 (19)
H13C	-0.1879	0.6060	0.0362	0.072*
H13D	-0.1963	0.5863	-0.0461	0.072*
C14	0.5892 (7)	0.3265 (6)	0.0117 (5)	0.073 (2)
H14A	0.5464	0.2786	-0.0056	0.088*
H14B	0.6482	0.3358	-0.0219	0.088*
C14A	-0.0931 (7)	0.5037 (5)	0.0062 (5)	0.063 (2)
H14C	-0.0528	0.4877	-0.0364	0.076*
H14D	-0.1492	0.4611	0.0141	0.076*
C15	0.5169 (7)	0.4059 (5)	0.0133 (4)	0.0534 (18)
C15A	-0.0155 (6)	0.5047 (5)	0.0704 (4)	0.0508 (17)
C16	0.4396 (8)	0.4081 (6)	-0.0503 (4)	0.074 (2)
H16A	0.4085	0.4647	-0.0560	0.089*
H16B	0.4776	0.3928	-0.0939	0.089*
C16A	0.0601 (8)	0.4272 (5)	0.0665 (5)	0.070 (2)
H16C	0.0899	0.4143	0.1134	0.084*
H16D	0.0208	0.3776	0.0492	0.084*
C18	0.3476 (8)	0.3369 (7)	0.0369 (5)	0.072 (2)
C18A	0.1552 (8)	0.5350 (6)	0.0136 (5)	0.0597 (19)
C19	0.4297 (6)	0.3962 (5)	0.0736 (4)	0.0485 (16)
H19	0.3944	0.4518	0.0799	0.058*
C19A	0.0699 (6)	0.5773 (4)	0.0622 (4)	0.0431 (15)
H19A	0.1043	0.5845	0.1092	0.052*
C20	0.4656 (7)	0.5224 (5)	0.3016 (4)	0.0589 (18)
H20A	0.4142	0.5619	0.3231	0.071*
H20B	0.4683	0.4704	0.3297	0.071*
C20A	0.0601 (7)	0.8482 (5)	0.1686 (4)	0.0578 (18)
H20C	0.1190	0.8730	0.1963	0.069*
H20D	0.0502	0.8806	0.1248	0.069*
C21	0.6457 (8)	0.6594 (6)	0.1925 (6)	0.081 (3)
H21A	0.6335	0.6825	0.1474	0.098*
H21B	0.7123	0.6677	0.2152	0.098*
C21A	-0.0921 (8)	0.7372 (7)	0.3096 (5)	0.091 (3)
H21C	-0.0777	0.6854	0.3319	0.109*
H21D	-0.1521	0.7695	0.3234	0.109*
C22	0.5889 (7)	0.4864 (6)	0.0139 (5)	0.065 (2)
H22A	0.6405	0.4827	0.0524	0.098*
H22B	0.5439	0.5360	0.0204	0.098*
H22C	0.6273	0.4908	-0.0307	0.098*
C22A	-0.0819 (8)	0.5005 (5)	0.1404 (4)	0.066 (2)
H22D	-0.1183	0.4464	0.1434	0.099*
H22E	-0.1350	0.5455	0.1408	0.099*
H22F	-0.0337	0.5069	0.1805	0.099*
Atomia dianlas	nt navameters (82)			
лоти изрисете	m purumeters (A)			

 U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}

01	0.076 (4)	0.102 (4)	0.077 (4)	-0.006 (4)	-0.011 (3)	-0.034 (3)
O1A	0.081 (4)	0.056 (3)	0.094 (4)	0.013 (3)	-0.034 (3)	0.002 (3)
O2	0.045 (3)	0.069 (3)	0.079 (3)	0.006 (3)	0.008 (3)	0.010 (3)
O2A	0.038 (3)	0.070 (3)	0.072 (3)	-0.011 (2)	-0.007 (3)	-0.002 (3)
O3	0.057 (4)	0.091 (4)	0.118 (5)	0.034 (4)	0.006 (4)	-0.002 (4)
O3A	0.033 (3)	0.067 (4)	0.094 (4)	-0.005 (3)	0.015 (3)	-0.004 (3)
O4	0.097 (4)	0.061 (3)	0.052 (3)	0.015 (3)	-0.010 (3)	0.012 (3)
O4A	0.059 (3)	0.073 (4)	0.053 (3)	0.020 (3)	-0.004 (3)	-0.010 (3)
O5	0.064 (3)	0.077 (4)	0.070 (3)	0.021 (3)	0.003 (3)	0.031 (3)
O5A	0.055 (3)	0.056 (3)	0.056 (3)	0.006 (3)	-0.006 (3)	-0.017 (3)
O6	0.092 (5)	0.104 (5)	0.119 (5)	-0.047 (4)	-0.003 (4)	-0.014 (4)
O6A	0.060 (4)	0.080 (4)	0.093 (4)	0.002 (3)	-0.037 (4)	0.000 (3)
C1	0.059 (4)	0.054 (4)	0.074 (4)	-0.005 (4)	0.010 (4)	0.009 (4)
C1A	0.049 (4)	0.061 (4)	0.057 (4)	0.005 (3)	-0.008 (3)	-0.008 (3)
C3	0.064 (4)	0.059 (4)	0.051 (4)	0.010 (4)	0.006 (4)	0.010 (3)
C3A	0.042 (4)	0.041 (4)	0.065 (4)	-0.004 (3)	0.005 (3)	-0.002 (3)
C4	0.042 (3)	0.047 (3)	0.047 (3)	0.005 (3)	0.006 (3)	0.001 (3)
C4A	0.038 (3)	0.050 (3)	0.045 (3)	0.004 (3)	0.007 (3)	0.004 (3)
C5	0.070 (4)	0.049 (4)	0.051 (4)	0.018 (3)	-0.005 (4)	-0.003 (3)
C5A	0.047 (3)	0.066 (4)	0.051 (4)	0.015 (3)	0.011 (3)	0.009 (3)
C6	0.067 (4)	0.044 (4)	0.057 (4)	0.009 (4)	-0.002 (4)	-0.009 (3)
C6A	0.056 (4)	0.075 (4)	0.042 (4)	0.012 (4)	0.014 (4)	0.011 (3)
C7	0.080 (4)	0.062 (4)	0.043 (4)	0.003 (4)	-0.004 (4)	-0.013 (3)
C7A	0.058 (4)	0.063 (4)	0.059 (4)	0.012 (4)	0.011 (4)	0.022 (3)
C8	0.050 (4)	0.073 (4)	0.055 (4)	0.008 (4)	-0.007 (4)	0.005 (4)
C8A	0.041 (4)	0.056 (4)	0.053 (4)	0.008 (3)	0.001 (3)	-0.006 (3)
С9	0.049 (4)	0.056 (4)	0.058 (4)	0.014 (3)	0.008 (3)	0.007 (3)
C9A	0.041 (3)	0.046 (4)	0.048 (3)	-0.002 (3)	0.001 (3)	-0.004(3)
C10	0.040 (3)	0.041 (3)	0.044 (3)	0.010 (3)	0.003 (3)	0.008 (3)
C10A	0.029 (3)	0.041 (3)	0.039 (3)	-0.003 (3)	-0.001 (3)	-0.004 (3)
C11	0.042 (3)	0.042 (3)	0.060 (3)	0.006 (3)	0.010 (3)	0.000 (3)
C11A	0.034 (3)	0.045 (3)	0.045 (3)	-0.007 (3)	-0.003 (3)	-0.004(3)
C12	0.066 (4)	0.045 (4)	0.076 (4)	0.008 (4)	0.004 (4)	-0.003(3)
C12A	0.050 (4)	0.062 (4)	0.039 (3)	0.002 (3)	0.002 (3)	0.000 (3)
C13	0.057 (4)	0.066 (4)	0.082 (5)	0.023 (4)	0.009 (4)	-0.005 (4)
C13A	0.053 (4)	0.071 (4)	0.055 (4)	-0.004 (4)	0.008 (4)	0.008 (4)
C14	0.063 (4)	0.081 (5)	0.077 (4)	0.005 (4)	0.009 (4)	-0.021 (4)
C14A	0.063 (4)	0.058 (4)	0.068 (4)	-0.012 (4)	-0.008 (4)	0.009 (4)
C15	0.051 (4)	0.061 (4)	0.047 (4)	0.010 (3)	0.004 (3)	-0.010 (3)
C15A	0.052 (4)	0.043 (4)	0.057 (4)	0.004 (3)	-0.011 (3)	-0.001 (3)
C16	0.066 (5)	0.098 (5)	0.057 (4)	0.015 (5)	0.005 (4)	-0.016 (4)
C16A	0.072 (5)	0.050 (4)	0.089 (5)	0.001 (4)	-0.024 (4)	-0.004 (4)
C18	0.060 (4)	0.078 (4)	0.078 (4)	0.003 (4)	-0.002 (4)	-0.009 (4)
C18A	0.053 (4)	0.061 (4)	0.065 (4)	0.010 (4)	-0.006 (4)	-0.001 (4)
C19	0.043 (3)	0.047 (3)	0.055 (3)	-0.005 (3)	0.002 (3)	-0.008 (3)
C19A	0.037 (3)	0.051 (3)	0.041 (3)	0.000 (3)	-0.005 (3)	0.001 (3)
C20	0.069 (4)	0.061 (4)	0.046 (3)	0.027 (3)	0.009 (3)	0.002 (3)
C20A	0.052 (4)	0.053 (4)	0.069 (4)	-0.002 (3)	0.013 (3)	0.008 (3)
C21	0.088 (6)	0.069 (6)	0.087 (6)	-0.019 (5)	-0.007 (6)	-0.003 (5)
		~ /	~ /			. /

C21A C22	0.090 (6) 0.059 (5)	0.123 (7)	0.059 (5) 0.061 (5)	0.054 (6) -0.005 (4)	-0.012(5) 0 012(4)	-0.023(5) 0 007(4)
C22A	0.069(5)	0.061 (5)	0.069(5)	-0.004(4)	-0.022(4)	-0.009(4)
0224	0.007 (3)	0.001 (5)	0.007 (3)	0.004 (4)	0.022 (4)	0.007 (4)
Geometric param	neters (Å, °)					
O1—C18		1.343 (11)	CS	9A—C10A		1.543 (9)
O1—C16		1.444 (11)	CS	РА—Н9А	(0.9800
O1A—C18A		1.330 (10)	C1	0—C11		1.568 (10)
O1A—C16A		1.445 (11)	C1	0—H10	(0.9800
O2—C3		1.323 (10)	C1	0A—C11A		1.566 (9)
O2—C1		1.432 (10)	C1	0A—H10A	(0.9800
O2A—C3A		1.330 (9)	C1	1—C19		1.544 (10)
O2A—C1A		1.438 (9)	C1	1—C12		1.549 (10)
O3—C3		1.201 (10)	C1	1A—C12A		1.548 (10)
O3A—C3A		1.204 (9)	Cl	1A—C19A		1.556 (10)
O4—C5		1.394 (9)	C1	2—C13		1.522 (12)
O4—H4		0.8200	C1	2—H12A	(0.9700
O4A—C5A		1.404 (9)	Cl	2—H12B	(0.9700
O4A—H4A		0.8200	Cl	2A—C13A		1.530 (11)
О5—С9		1.433 (9)	C1	2A—H12C	(0.9700
O5—H5		0.8200	Cl	2A—H12D	(0.9700
O5A—C9A		1.443 (8)	Cl	3—C14		1.515 (12)
O5A—H5B		0.8200	Cl	3—H13A	(0.9700
O6—C18		1.188 (11)	Cl	3—H13B	(0.9700
O6A—C18A		1.192 (10)	Cl	3A—C14A		1.515 (11)
C1-C11		1.526 (10)	Cl	3A—H13C	(0.9700
C1—H1A		0.9700	Cl	3A—H13D	(0.9700
C1—H1B		0.9700	Cl	4—C15		1.528 (11)
C1A—C11A		1.516 (10)	Cl	4—H14A	0.9700	
C1A—H1C		0.9700	C1	4—H14B	0.9700	
C1A—H1D		0.9700	Cl	4A—C15A	1.532 (11)	
C3—C4		1.512 (12)	C1	4A—H14C	(0.9700
C3A—C4A		1.504 (10)	Cl	4A—H14D	(0.9700
C4—C5		1.551 (11)	C1	5—C16		1.521 (11)
C4—C20		1.553 (10)	Cl	5—C22		1.539 (11)
C4—C10		1.584 (10)	C1	5—C19		1.561 (10)
C4A—C20A		1.548 (11)	C1	5A—C16A		1.529 (11)
C4A—C5A		1.554 (10)	Cl	5A—C22A		1.542 (11)
C4A—C10A		1.579 (10)	C1	5A—C19A		1.554 (10)
C5—C6		1.516 (12)	Cl	6—H16A	(0.9700
С5—Н5А		0.9800	Cl	6—H16B	(0.9700
C5A—C6A		1.501 (11)	Cl	6A—H16C	(0.9700
C5A—H5C		0.9800	C1	6A—H16D	(0.9700
C6—C21		1.308 (12)	C1	8—C19		1.531 (12)
C6—C7		1.533 (11)	C1	8A—C19A	-	1.537 (11)
C6A—C21A		1.314 (12)	C1	9—H19	(0.9800
C6A—C7A		1.510 (11)	C1	9A—H19A	(0.9800
С7—С8		1.544 (11)	C2	20—H20A	(0.9700

C7—C20	1.550 (12)	C20—H20B	0.9700
С7—Н7	0.9800	C20A—H20C	0.9700
C7A—C8A	1.523 (11)	C20A—H20D	0.9700
C7A—C20A	1.546 (11)	C21—H21A	0.9300
С7А—Н7А	0.9800	C21—H21B	0.9300
C8—C9	1.536 (11)	C21A—H21C	0.9300
C8—H8A	0.9700	C21A—H21D	0.9300
C8—H8B	0.9700	C22—H22A	0.9600
C8A—C9A	1.527 (10)	C22—H22B	0.9600
C8A—H8C	0.9700	C22—H22C	0.9600
C8A—H8D	0.9700	C22A—H22D	0.9600
C9—C10	1.543 (10)	C22A—H22E	0.9600
С9—Н9	0.9800	C22A—H22F	0.9600
C18—O1—C16	109.4 (7)	C12A—C11A—C19A	109.6 (6)
C18A—O1A—C16A	110.4 (7)	C1A-C11A-C10A	106.2 (6)
C3—O2—C1	119.3 (7)	C12A—C11A—C10A	114.8 (6)
C3A—O2A—C1A	119.2 (6)	C19A—C11A—C10A	109.3 (5)
С5—О4—Н4	109.5	C13—C12—C11	114.0 (7)
C5A—O4A—H4A	109.5	C13—C12—H12A	108.8
С9—О5—Н5	109.5	C11—C12—H12A	108.8
C9A—O5A—H5B	109.5	C13—C12—H12B	108.8
O2—C1—C11	112.1 (6)	C11—C12—H12B	108.8
O2—C1—H1A	109.2	H12A—C12—H12B	107.7
C11—C1—H1A	109.2	C13A—C12A—C11A	114.0 (6)
O2—C1—H1B	109.2	C13A—C12A—H12C	108.8
C11—C1—H1B	109.2	C11A—C12A—H12C	108.8
H1A—C1—H1B	107.9	C13A—C12A—H12D	108.8
O2A—C1A—C11A	112.9 (6)	C11A—C12A—H12D	108.8
O2A—C1A—H1C	109.0	H12C-C12A-H12D	107.7
C11A—C1A—H1C	109.0	C14—C13—C12	109.3 (7)
O2A—C1A—H1D	109.0	C14—C13—H13A	109.8
C11A—C1A—H1D	109.0	С12—С13—Н13А	109.8
H1C—C1A—H1D	107.8	C14—C13—H13B	109.8
O3—C3—O2	118.9 (8)	С12—С13—Н13В	109.8
O3—C3—C4	122.1 (8)	H13A—C13—H13B	108.3
O2—C3—C4	119.0 (7)	C14A—C13A—C12A	109.3 (7)
O3A—C3A—O2A	118.1 (7)	C14A—C13A—H13C	109.8
O3A—C3A—C4A	122.6 (7)	C12A—C13A—H13C	109.8
O2A—C3A—C4A	119.2 (7)	C14A—C13A—H13D	109.8
C3—C4—C5	109.0 (6)	C12A—C13A—H13D	109.8
C3—C4—C20	111.0 (6)	H13C—C13A—H13D	108.3
C5—C4—C20	96.6 (6)	C13—C14—C15	113.4 (7)
C3—C4—C10	118.2 (7)	C13—C14—H14A	108.9
C5—C4—C10	109.9 (6)	C15-C14-H14A	108.9
C20—C4—C10	110.0 (6)	C13—C14—H14B	108.9
C3A—C4A—C20A	109.5 (6)	C15—C14—H14B	108.9
C3A—C4A—C5A	110.0 (6)	H14A—C14—H14B	107.7
C20A—C4A—C5A	98.2 (6)	C13A—C14A—C15A	112.1 (7)
C3A—C4A—C10A	117.8 (6)	C13A—C14A—H14C	109.2

C20A—C4A—C10A	110.3 (6)	C15A—C14A—H14C	109.2
C5A—C4A—C10A	109.3 (6)	C13A—C14A—H14D	109.2
O4—C5—C6	113.5 (7)	C15A—C14A—H14D	109.2
O4—C5—C4	115.1 (6)	H14C—C14A—H14D	107.9
C6—C5—C4	101.4 (6)	C16-C15-C14	111.3 (7)
O4—C5—H5A	108.8	C16—C15—C22	110.1 (7)
С6—С5—Н5А	108.8	C14—C15—C22	109.6 (7)
C4—C5—H5A	108.8	C16—C15—C19	98.0 (6)
O4A—C5A—C6A	111.6 (7)	C14—C15—C19	109.4 (7)
O4A—C5A—C4A	116.8 (6)	C22—C15—C19	117.9 (6)
C6A—C5A—C4A	102.0 (6)	C16A—C15A—C14A	109.4 (7)
O4A—C5A—H5C	108.7	C16A—C15A—C22A	109.0 (7)
C6A—C5A—H5C	108.7	C14A—C15A—C22A	109.7 (7)
С4А—С5А—Н5С	108.7	C16A—C15A—C19A	99.7 (6)
C21—C6—C5	126.3 (8)	C14A—C15A—C19A	110.4 (6)
C21—C6—C7	126.7 (8)	C22A—C15A—C19A	118.1 (6)
C5—C6—C7	106.6 (7)	O1—C16—C15	105.5 (7)
C21A—C6A—C5A	125.1 (8)	O1—C16—H16A	110.6
C21A—C6A—C7A	126.0 (8)	С15—С16—Н16А	110.6
C5A—C6A—C7A	108.6 (6)	O1—C16—H16B	110.6
C6—C7—C8	109.5 (6)	С15—С16—Н16В	110.6
C6—C7—C20	103.0 (7)	H16A—C16—H16B	108.8
C8—C7—C20	108.3 (6)	O1A—C16A—C15A	105.8 (7)
С6—С7—Н7	111.9	O1A—C16A—H16C	110.6
С8—С7—Н7	111.9	C15A—C16A—H16C	110.6
С20—С7—Н7	111.9	O1A—C16A—H16D	110.6
C6A—C7A—C8A	110.8 (7)	C15A—C16A—H16D	110.6
C6A—C7A—C20A	102.6 (6)	H16C—C16A—H16D	108.7
C8A—C7A—C20A	109.1 (6)	O6—C18—O1	120.3 (10)
С6А—С7А—Н7А	111.4	O6—C18—C19	130.6 (9)
С8А—С7А—Н7А	111.4	O1—C18—C19	109.2 (8)
C20A—C7A—H7A	111.4	O6A—C18A—O1A	121.7 (9)
C9—C8—C7	111.5 (7)	O6A—C18A—C19A	128.5 (8)
С9—С8—Н8А	109.3	O1A—C18A—C19A	109.8 (8)
С7—С8—Н8А	109.3	C18—C19—C11	114.9 (7)
С9—С8—Н8В	109.3	C18—C19—C15	100.8 (6)
С7—С8—Н8В	109.3	C11—C19—C15	117.7 (6)
H8A—C8—H8B	108.0	С18—С19—Н19	107.6
C7A—C8A—C9A	112.8 (6)	С11—С19—Н19	107.6
С7А—С8А—Н8С	109.0	С15—С19—Н19	107.6
С9А—С8А—Н8С	109.0	C18A—C19A—C15A	101.6 (6)
C7A—C8A—H8D	109.0	C18A—C19A—C11A	117.7 (6)
C9A—C8A—H8D	109.0	C15A—C19A—C11A	116.8 (6)
H8C—C8A—H8D	107.8	C18A—C19A—H19A	106.6
O5—C9—C8	110.8 (6)	C15A—C19A—H19A	106.6
O5—C9—C10	109.4 (6)	С11А—С19А—Н19А	106.6
C8—C9—C10	111.9 (6)	С7—С20—С4	100.3 (6)
О5—С9—Н9	108.2	С7—С20—Н20А	111.7
С8—С9—Н9	108.2	C4—C20—H20A	111.7

С10—С9—Н9	108.2	С7—С20—Н20В	111.7
O5A—C9A—C8A	110.4 (6)	C4—C20—H20B	111.7
O5A—C9A—C10A	108.9 (5)	H20A—C20—H20B	109.5
C8A—C9A—C10A	112.4 (6)	C7A—C20A—C4A	100.0 (6)
О5А—С9А—Н9А	108.4	C7A—C20A—H20C	111.8
С8А—С9А—Н9А	108.4	C4A—C20A—H20C	111.8
С10А—С9А—Н9А	108.4	C7A—C20A—H20D	111.8
C9—C10—C11	114.6 (6)	C4A—C20A—H20D	111.8
C9—C10—C4	112.4 (6)	H20C—C20A—H20D	109.5
C11—C10—C4	111.1 (6)	C6—C21—H21A	120.0
C9—C10—H10	106.0	С6—С21—Н21В	120.0
C11—C10—H10	106.0	H21A—C21—H21B	120.0
C4-C10-H10	106.0	C6A—C21A—H21C	120.0
C9A—C10A—C11A	115.3 (5)	C6A—C21A—H21D	120.0
C9A—C10A—C4A	112.9 (5)	H21C—C21A—H21D	120.0
C11A—C10A—C4A	111.1 (5)	C15—C22—H22A	109.5
C9A—C10A—H10A	105.5	С15—С22—Н22В	109.5
C11A—C10A—H10A	105.5	H22A—C22—H22B	109.5
C4A—C10A—H10A	105.5	C15—C22—H22C	109.5
C1—C11—C19	112.1 (6)	H22A—C22—H22C	109.5
C1—C11—C12	108.0 (6)	H22B—C22—H22C	109.5
C19—C11—C12	108.0 (6)	C15A—C22A—H22D	109.5
C1-C11-C10	105.5 (6)	C15A—C22A—H22E	109.5
C19—C11—C10	110.1 (6)	H22D—C22A—H22E	109.5
C12-C11-C10	113.2 (6)	C15A—C22A—H22F	109.5
C1A—C11A—C12A	105.4 (6)	H22D—C22A—H22F	109.5
C1A—C11A—C19A	111.5 (6)	H22E—C22A—H22F	109.5
C3—O2—C1—C11	-48.6 (10)	C9—C10—C11—C12	-31.4 (9)
C3A—O2A—C1A—C11A	-43.2 (9)	C4-C10-C11-C12	-160.1 (6)
C1—O2—C3—O3	-177.0 (7)	O2A—C1A—C11A—C12A	-171.7 (6)
C1—O2—C3—C4	2.0 (10)	O2A-C1A-C11A-C19A	-52.9 (8)
C1A—O2A—C3A—O3A	178.3 (7)	O2A-C1A-C11A-C10A	66.1 (8)
C1A—O2A—C3A—C4A	-4.4 (10)	C9A—C10A—C11A—C1A	87.5 (7)
O3—C3—C4—C5	-33.7 (10)	C4A—C10A—C11A—C1A	-42.6 (7)
O2—C3—C4—C5	147.3 (7)	C9A—C10A—C11A—C12A	-28.5 (8)
O3—C3—C4—C20	71.5 (10)	C4A-C10A-C11A-C12A	-158.6 (6)
O2—C3—C4—C20	-107.5 (8)	C9A—C10A—C11A—C19A	-152.1 (6)
O3—C3—C4—C10	-160.1 (7)	C4A—C10A—C11A—C19A	77.8 (7)
O2—C3—C4—C10	21.0 (10)	C1-C11-C12-C13	173.9 (7)
O3A—C3A—C4A—C20A	75.2 (9)	C19—C11—C12—C13	52.5 (9)
O2A—C3A—C4A—C20A	-102.0 (8)	C10-C11-C12-C13	-69.7 (9)
O3A—C3A—C4A—C5A	-31.7 (10)	C1A—C11A—C12A—C13A	169.9 (6)
O2A—C3A—C4A—C5A	151.2 (7)	C19A—C11A—C12A—C13A	49.8 (8)
O3A—C3A—C4A—C10A	-157.8 (7)	C10A—C11A—C12A—C13A	-73.7 (8)
O2A—C3A—C4A—C10A	25.1 (10)	C11—C12—C13—C14	-59.8 (10)
C3—C4—C5—O4	-71.1 (9)	C11A—C12A—C13A—C14A	-59.2 (9)
C20—C4—C5—O4	174.0 (7)	C12—C13—C14—C15	59.2 (10)
C10—C4—C5—O4	59.9 (9)	C12A—C13A—C14A—C15A	60.9 (9)
C3—C4—C5—C6	165.9 (6)	C13—C14—C15—C16	-159.2 (8)

C20—C4—C5—C6	51.0 (7)	C13—C14—C15—C22	78.7 (9)
C10-C4-C5-C6	-63.1 (7)	C13—C14—C15—C19	-52.0 (9)
C3A—C4A—C5A—O4A	-78.8 (9)	C13A—C14A—C15A—C16A	-163.1 (7)
C20A—C4A—C5A—O4A	167.0 (6)	C13A—C14A—C15A—C22A	77.4 (8)
C10A—C4A—C5A—O4A	52.0 (8)	C13A—C14A—C15A—C19A	-54.4 (9)
C3A—C4A—C5A—C6A	159.4 (6)	C18—O1—C16—C15	25.3 (9)
C20A—C4A—C5A—C6A	45.1 (8)	C14—C15—C16—O1	75.6 (8)
C10A—C4A—C5A—C6A	-69.9 (7)	C22-C15-C16-O1	-162.7 (6)
O4—C5—C6—C21	19.4 (12)	C19-C15-C16-O1	-39.0 (8)
C4—C5—C6—C21	143.5 (9)	C18A—O1A—C16A—C15A	23.0 (9)
O4—C5—C6—C7	-153.2 (6)	C14A—C15A—C16A—O1A	81.6 (8)
C4—C5—C6—C7	-29.1 (7)	C22A—C15A—C16A—O1A	-158.5 (6)
O4A—C5A—C6A—C21A	27.6 (12)	C19A—C15A—C16A—O1A	-34.2 (7)
C4A—C5A—C6A—C21A	153.0 (9)	C16—O1—C18—O6	-178.1 (9)
O4A—C5A—C6A—C7A	-146.7 (7)	C16—O1—C18—C19	1.0 (10)
C4A—C5A—C6A—C7A	-21.2 (9)	C16A—O1A—C18A—O6A	177.5 (8)
C21—C6—C7—C8	-62.3 (11)	C16A—O1A—C18A—C19A	-0.6 (9)
C5—C6—C7—C8	110.3 (7)	O6—C18—C19—C11	25.6 (14)
C21—C6—C7—C20	-177.4 (8)	O1-C18-C19-C11	-153.3 (7)
C5—C6—C7—C20	-4.9 (8)	O6—C18—C19—C15	153.3 (11)
C21A—C6A—C7A—C8A	-69.4 (11)	O1-C18-C19-C15	-25.6 (9)
C5A—C6A—C7A—C8A	104.7 (7)	C1-C11-C19-C18	-47.2 (9)
C21A—C6A—C7A—C20A	174.3 (9)	C12-C11-C19-C18	71.6 (8)
C5A—C6A—C7A—C20A	-11.5 (9)	C10-C11-C19-C18	-164.3 (6)
C6—C7—C8—C9	-81.4 (8)	C1-C11-C19-C15	-165.8 (6)
C20—C7—C8—C9	30.3 (9)	C12—C11—C19—C15	-46.9 (9)
C6A—C7A—C8A—C9A	-83.1 (8)	C10-C11-C19-C15	77.2 (8)
C20A—C7A—C8A—C9A	29.0 (9)	C16-C15-C19-C18	37.5 (8)
C7—C8—C9—O5	-87.8 (7)	C14—C15—C19—C18	-78.5 (8)
C7—C8—C9—C10	34.6 (9)	C22-C15-C19-C18	155.4 (7)
C7A—C8A—C9A—O5A	-88.3 (7)	C16-C15-C19-C11	163.3 (7)
C7A—C8A—C9A—C10A	33.5 (9)	C14—C15—C19—C11	47.3 (9)
O5—C9—C10—C11	-56.6 (8)	C22-C15-C19-C11	-78.8 (9)
C8—C9—C10—C11	-179.8 (6)	O6A—C18A—C19A—C15A	160.9 (8)
O5—C9—C10—C4	71.4 (8)	O1A-C18A-C19A-C15A	-21.2 (8)
C8—C9—C10—C4	-51.8 (8)	O6A-C18A-C19A-C11A	32.0 (12)
C3—C4—C10—C9	-127.3 (7)	O1A-C18A-C19A-C11A	-150.1 (6)
C5—C4—C10—C9	106.8 (7)	C16A-C15A-C19A-C18A	32.2 (7)
C20—C4—C10—C9	1.6 (8)	C14A—C15A—C19A—C18A	-82.8 (7)
C3—C4—C10—C11	2.5 (9)	C22A-C15A-C19A-C18A	150.0 (7)
C5-C4-C10-C11	-123.4 (6)	C16A—C15A—C19A—C11A	161.7 (6)
C20—C4—C10—C11	131.5 (6)	C14A—C15A—C19A—C11A	46.7 (8)
O5A—C9A—C10A—C11A	-53.7 (7)	C22A-C15A-C19A-C11A	-80.5 (8)
C8A—C9A—C10A—C11A	-176.3 (6)	C1A—C11A—C19A—C18A	-38.9 (9)
O5A—C9A—C10A—C4A	75.5 (7)	C12A—C11A—C19A—C18A	77.4 (8)
C8A—C9A—C10A—C4A	-47.1 (8)	C10A—C11A—C19A—C18A	-156.0 (6)
C3A—C4A—C10A—C9A	-129.7 (7)	C1A—C11A—C19A—C15A	-160.3 (6)
C20A—C4A—C10A—C9A	-3.1 (8)	C12A—C11A—C19A—C15A	-44.0 (8)
C5A—C4A—C10A—C9A	103.9 (7)	C10A—C11A—C19A—C15A	82.7 (7)

C3A—C4A—C10A—C11A	1.6 (9)	C6—C7—C20—C4	36.9 (7)
C20A-C4A-C10A-C11A	128.3 (6)	C8—C7—C20—C4	-79.1 (7)
C5A—C4A—C10A—C11A	-124.8 (6)	C3—C4—C20—C7	-167.3 (6)
O2-C1-C11-C19	-52.1 (9)	C5—C4—C20—C7	-54.0 (7)
O2-C1-C11-C12	-170.9 (7)	C10-C4-C20-C7	59.9 (7)
O2-C1-C11-C10	67.8 (8)	C6A—C7A—C20A—C4A	39.8 (8)
C9—C10—C11—C1	86.4 (7)	C8A—C7A—C20A—C4A	-77.7 (7)
C4-C10-C11-C1	-42.3 (7)	C3A—C4A—C20A—C7A	-167.0 (6)
C9—C10—C11—C19	-152.5 (6)	C5A—C4A—C20A—C7A	-52.3 (7)
C4—C10—C11—C19	78.8 (7)	C10A—C4A—C20A—C7A	61.9 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O4—H4···O3A	0.82	2.46	3.159 (8)	144
O4A—H4A…O3	0.82	1.94	2.750 (8)	168
O5—H5···O3A ⁱ	0.82	1.97	2.787 (8)	175
O5A—H5B···O6A ⁱⁱ	0.82	2.11	2.903 (9)	164
	12/2			

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) x-1/2, -y+3/2, -z.

Comparison of the puckering parameters $(Å, \circ)$ for the six- and five-membered rings of molecules 1 and 2

Molecule	А			В		
Puckering para- meters	Q	θ	φ	Q	θ	φ
Ring A, A"	0.545 (9)	171.2 (9)	296 (6)	0.546 (8)	168.9 (8)	315 (5)
Ring B, B"	0.584 (9)	65.6 (8)	91.8 (8)	0.582 (8)	68.4 (8)	95.2 (7)
Ring C, C"	0.861 (8)	80.2 (5)	286.4 (6)	0.837 (8)	78.9 (5)	288.8 (6)
Puckering para- meters		Q2	φ2		Q2	φ2
Ring D, D"		0.561 (9)	174.6 (9)		0.530 (9)	167.1 (9)
Ring E, E"		0.412 (9)	254.0 (13)		0.355 (9)	251.8 (14)

Ring A: C11···C15-C19 Ring A'': C11A···C15A-C19A Ring B: O2-C1-C11-C10-C4-C3 Ring B'': O2A-C1A-C11A-C10A-C4A-C3A Ring C: C4-C10-C9-C8-C7-C20 Ring C'': C4A-C10A-C9A-C8A-C7A-C20A Ring D: C4···C7-C20 Ring D'': C4A···C7A-C20A Ring E: O1-C16-C15-C19-C18 Ring E'': O1A-C16A-C15A-C19A-C18A

Fig. 1

Fig. 2

Fig. 3

